Indexed by:
Abstract:
Inefficient charge separation and slow interfacial reaction dynamics significantly hamper the efficiency of photocatalytic CO2 reduction. Herein, a facile EDC/NHS-assisted linking strategy was developed to enhance charge separation in heterojunction photocatalysts. Using this approach, we successfully synthesized amide-bonded carbon quantum dot-g-C3N4 (CQD-CN) heterojunction photocatalysts. The formation of amide covalent bonds between CN and CQDs in the CN-CQD facilitates efficient carrier migration, CO2 adsorption, and activation. Exploiting these advantages, the CN-CQD photocatalysts exhibit high selectivity with CO and CH4 evolution rates of 79.2 and 2.7 mu mol g(-1) h(-1), respectively. These rates are about 1.7 and 3.6 times higher than those of CN@CQD and bulk CN, respectively. Importantly, the CN-CQD photocatalysts demonstrate exceptional stability, even after 12 h of continuous testing. The presence of the COOH* signal is identified as a crucial intermediate species in the conversion of CO2 to CO. This study presents a covalent bonding engineering strategy for developing high-performance heterojunction photocatalysts for efficient solar-driven reduction of CO2.
Keyword:
Reprint 's Address:
Email:
Source :
ACS NANO
ISSN: 1936-0851
Year: 2023
1 7 . 1 0 0
JCR@2022
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 43
SCOPUS Cited Count: 42
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: