Indexed by:
Abstract:
Noise is often considered as the biggest enemy of maintaining quantum entanglement. However, in this paper, it shows quantum entanglement can be protected by introducing extra noises to a quantum system. As an example, the dynamics of a two-qubit system coupled to a cavity is studied under the influence of three noises, a quantized noise from the leakage of the cavity and two classical noises in the couplings between the two-qubit system and the cavity. The master equation beyond the Markov approximation is derived and the mechanism of the entanglement protection is analyzed in a special case with analytical solutions. In short, the entanglement loss caused by the dissipation to the bath might be weaken by introducing high-frequency classical noises properly. The numerical simulations not only confirm the feasibility of protecting entanglement by noises but also reveal that the properties of the classical noises have a significant impact on the performance of the entanglement protection. © 2023 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Advanced Quantum Technologies
Year: 2023
Issue: 12
Volume: 6
4 . 4
JCR@2023
4 . 4 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: