Indexed by:
Abstract:
We report a photochemical bismuth vanadate (BiVO4) sensing material, which possesses a large proportion of (110) and (011) facets combined with the additional (111) facets, for the selective detection of ultra-low concentration hydrogen sulfide (H2S) driven by visible light. Specifically, the obtained octadecahedron BiVO4 (Octa-BiVO4) performs a high response value (67) and short response time (47.4 s) to 100 ppm H2S with good stability for nearly 100 days, as well as undisturbedness by moist air. With the combination of experimental and theoretical calculation results, the adsorption and carrier transfer behaviors of H2S molecules on the Octa-BiVO4 crystal surface are investigated. By adjusting the ratio of different crystal facets and controlling the facets with characteristic adsorption, we achieve improved anisotropic photoinduced carrier separation and high selectivity for a specific gas. Furthermore, this facial facet engineering can be extended to the synthesis of other sensing materials, offering huge opportunities for fundamental research and technological applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2023
Issue: 50
Volume: 62
1 6 . 1
JCR@2023
1 6 . 1 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0