Indexed by:
Abstract:
现有剩余电流保护器多以总剩余电流有效值作为动作判据,阈值固定,且无法识别触电类型,因而提出基于自适应阈值和BP神经网络的低压配电网生命体触电识别方法。总剩余电流信号经Mallat算法消噪处理,由得到的低频分量构造出自适应阈值,用于确定触电发生时刻,提取能表征生命体特性的统计量特征,对BP神经网络进行训练,建立触电类型识别模型。物理仿真实验表明,该方法能够满足剩余电流保护器所要求的速动性和可靠性,触电类型识别准确率达99.93%,对于开发新一代剩余电流保护器具有参考价值。
Keyword:
Reprint 's Address:
Email:
Source :
电网技术
Year: 2022
Issue: 04
Volume: 46
Page: 1614-1623
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: