Indexed by:
Abstract:
针对滚动轴承未知新故障误判影响轴承安全性和检修效率的问题,提出了一种基于改进灰狼算法(GWO)和轻量级梯度提升机(LightGBM)的故障诊断模型,实现已知/未知故障的高精度判别。为避免单一尺度下特征提取的缺失,对滚动轴承振动信号分别提取时域、频域和小波域特征建立多域特征集。设计了带未知新故障判别机制的GWO-LightGBM模型,并构造含有Halton序列和模拟退火策略的GWO实现了模型参数有效优化。实例试验结果表明,模型对已知和未知类故障平均识别率达99.57%,10次随机试验平均识别率分别比单一分类模型逻辑回归(LR)、最近邻分类器(KNN)和支持向量机(SVM)高21.98%、17.00%、9.27%,验证了模型的有效性和优越性,能高准确率地识别出已知或以前从未出现的新故障。
Keyword:
Reprint 's Address:
Email:
Source :
航空动力学报
Year: 2022
Issue: 04
Volume: 37
Page: 848-855
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: