Indexed by:
Abstract:
目前对于超大城市土地覆盖和热环境定量模型研究报道不足,这主要是因为大城市地表温度和地表生物物理组分之间存在复杂的潜在非线性关系,这使得准确评估城市热环境情况遇到了严峻的技术挑战。研究选取中外6个典型超大城市(北京、上海、广州、伦敦、纽约和东京)为研究对象,以Landsat遥感影像为主要数据源,利用单通道算法反演各城市地表温度,采用随机森林回归模型(RFR)建立土地覆盖类型与城市热环境定量关系模型(LCT),综合分析城市土地覆盖因子与热环境间的多维定量关系。土地覆盖与地表温度的定量关系显示,城市地表热场的空间结构在很大程度上被下垫面用地类型所左右,不透水面会导致高温热场的聚集,而植被和水体则有降温作用。6个超大城市地表覆盖结构变化产生的升温/降温效应有所差异,北京、上海、纽约和东京等城市区域的植被和水体降温效应较广州和伦敦显著。基于随机森林回归方法建立了NDVI、MNDWI和NDISI等3种土地覆盖类型与城市热环境的综合定量关系模型(LCT),模型得到的精度高于基于多元线性回归方法建立的模型。LCT_RF模型的R2值在0.623~0.826之间,比LCT_MLR模型高0.021~0.074;RMSE比LCT_MLR模型低0.07℃~0.35℃。研究超大城市土地覆盖与城市热环境的互动作用机理,能为未来生态城市建设提供宝贵建议。
Keyword:
Reprint 's Address:
Email:
Source :
遥感技术与应用
Year: 2022
Issue: 02
Volume: 37
Page: 379-388
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: