Indexed by:
Abstract:
提出一种结合深度特征与美学特征的图像增强方法.首先,结合多种图像特征重构智能体评估网络,该网络通过拼接图像语义特征、图像色彩特征及历史动作信息输出当前策略.其次,感知奖励模型通过预训练分类模型激活层网络提取深层特征,使用余弦距离获得图像间的深度感知距离;利用美学模型获得图像间的概率距离.最后,结合两方面的距离表示并将其用于奖励模型构造中.在MIT-Adobe FiveK数据集上的实验结果表明,本色彩增强方法在结构相似度和平均均方误差上优于其他基线算法,模型场景适用性强.生成图像在保留更多的细节信息的同时,可以有效增强图像色彩.
Keyword:
Reprint 's Address:
Email:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2022
Issue: 04
Volume: 50
Page: 459-467
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: