Indexed by:
Abstract:
个体位置预测在传染病精准防控、公共设施科学规划等应用中具有重要意义,既有位置预测算法主要侧重对个体纵向历史轨迹特征进行挖掘建模,从而实现位置预测,对横向相似性用户的规律特性考虑较少。因此,基于图卷积和长短期记忆模型(long short-term memory,LSTM)框架,提出顾及横向相似用户轨迹特征以及纵向历史规律性特征的个体位置预测算法。首先,构建用户轨迹相似性算法并筛选高相似度用户;然后,利用图卷积模型提取待预测用户相似高的用户轨迹特征;最后,利用LSTM框架提取历史轨迹特征,集成相似用户轨迹特征,从而实现个体位置预测。基于某市8万多个用户连续4个工作日的数据进行实验,结果表明,所提算法的准确率随预测时间步长增加而下降,而夜间预测准确率明显高于白天,但相比于既有模型均有10%以上提高;以15 min为预测时间步长时,模型准确率达80.45%。
Keyword:
Reprint 's Address:
Email:
Source :
武汉大学学报(信息科学版)
Year: 2023
Issue: 04
Volume: 48
Page: 656-664
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: