Indexed by:
Abstract:
Image segmentation is a critical step in computer-aided system diagnosis. However, many existing segmentation methods are designed for single-task driven segmentation, ignoring the potential benefits of incorporating multi-task methods, such as salient object detection (SOD) and image segmentation. In this paper, we propose a novel dual-task framework for the detection and segmentation of white blood cells and skin lesions. Our method comprises three main components: hair removal preprocessing for skin lesion images, a novel color contextual extractor (CCE) module for the SOD task, and an improved adaptive threshold (AT) paradigm for the image segmentation task. We evaluate the effectiveness of our proposed method on three medical image datasets, demonstrating superior performance compared to representative approaches. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2023
Volume: 14255 LNCS
Page: 457-468
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: