Indexed by:
Abstract:
Structural optimization is an active research branch in engineering, especially dealing with complex and concomitant aspects likewise in seismic design. Capacity design criteria for seismic design and detailing must be respected, e.g. according to the 'strong-column weak-beam' principle. In steel structures, the choice of a specific beam-column joint typology may strongly affect its behavior under horizontal actions. In this study, the authors investigated the role of beam-column joint stiffness within an optimization paradigm related to steel structure frames. Specifically, the authors adopted simplified modeling assumptions for analysis under lateral loads in the Python environment and Computer and Structures inc. SAP2000 finite element software. Indeed, the main focus hitherto is oriented toward the problem definition accounting for geometric constraints and beam-column rotational stiffness capacity. Future investigations will adopt more realistic modeling procedures accounting for the typical non-linearities involved during strong dynamic actions. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 2366-2557
Year: 2024
Volume: 437
Page: 129-138
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: