Indexed by:
Abstract:
Given the shortage of intensive care units (ICUs) due to the coronavirus disease (COVID-19), a prediction model is essential in ensuring the availability of ICU beds. However, several challenges, such as the importance of distinguishing indicators, efficiency of ICU admission records, and the explainability and effectiveness of the prediction model, hinder the effective prediction of ICU admissions. To mitigate these challenges, an explainable decision model that uses the extended belief rule-based system is introduced to predict ICU admission. First, an indicator extraction model is proposed to measure the importance of the various indicators and obtain representative indicators. Second, a Charnes, Cooper, and Rhodes (CCR) model is constructed to measure the efficiencies of the belief rules to achieve the compact structure of an extended belief rule base. Third, a new extended belief rule-based model, optimized by parameter optimization and domain division-based rule reduction, is developed to predict ICU admission. These procedures enable the explainable decision model to adapt to big data situation, offer explanations and realize high efficiency. Finally, a case study of ICU admission during a COVID-19 outbreak is conducted to demonstrate the implementation and effectiveness of the proposed model in a comparative analysis.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED SOFT COMPUTING
ISSN: 1568-4946
Year: 2023
Volume: 149
7 . 2
JCR@2023
7 . 2 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: