Indexed by:
Abstract:
Diabetic retinopathy (DR) is a chronic complication of diabetes that damages the retina and is one of the leading causes of blindness. In the process of diabetic retinopathy analysis, it is necessary to first assess the quality of images and select the images with better imaging quality. Then DR analysis, such as DR grading, is performed. Therefore, it is crucial to implement a flexible and robust method to achieve automatic image quality assessment and DR grading. In deep learning, due to the high complexity, weak individual differences, and noise interference of ultra-wide optical coherence tomography angiography (UW-OCTA) images, individual classification networks have not been able to achieve satisfactory accuracy on such tasks and do not generalize well. Therefore, in this work, we use multiple models ensemble methods, by ensemble different baseline networks of RegNet and EfficientNetV2, which can simply and significantly improve the prediction accuracy and robustness. A transfer learning based solution is proposed for the problem of insufficient diabetic image data for retinopathy. After doing feature enhancement on the images, the UW-OCTA image task will be fine-tuned by combining the network pre-trained with ImageNet data. our method achieves a quadratic weighted kappa of 0.778 and AUC of 0.887 in image quality assessment (IQA) and 0.807 kappa and AUC of 0.875 in diabetic retinopathy grading. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2023
Volume: 13597 LNCS
Page: 178-185
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: