Indexed by:
Abstract:
This paper presents a symbiotic organism search (SOS)-based support vector regression (SVR) ensemble for predicting the printed circuit board (PCB) cycle time of surface-mount-technology (SMT) production lines. Being able to predict the PCB cycle time accurately is essential for optimising the SMT production schedule. Although a machine simulator can be reliably used for single-type PCB production, it is time-consuming and often inaccurate for the simulator to be applied for highly mixed orders in multiple flexible SMT production lines. Due to the dynamic changes in both PCB orders and SMT production lines, there is a diverse set of samples, but the size of similar samples is relatively small. An SVR model is therefore used to estimate the PCB cycle time, and the SOS algorithm is employed to optimise the SVR parameters. We assume that uncertainties during the assembly process can be captured by the characteristics of PCB and SMT lines, which are utilised as features to train the SVR model. To enhance the performance of the prediction accuracy, an SOS-SVR ensemble is proposed. Experiments based on datasets collected from a leading global electronics manufacturer confirm the efficiency of the proposed approach compared to industrial solutions currently in place and other machine learning methods.
Keyword:
Reprint 's Address:
Version:
Source :
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
ISSN: 0020-7543
Year: 2020
Issue: 23
Volume: 59
Page: 7246-7265
8 . 5 6 8
JCR@2020
7 . 0 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: