Indexed by:
Abstract:
High-performance multifunctional polymeric materials integrated with high fire safety, excel-lent mechanical performances and electromagnetic interference (EMI) shielding properties have great prospects in practical applications. However, designing highly fire-safe and mechanically ro-bust EMI shielding nanocomposites remains a great challenge. Herein, hierarchical thermoplastic polyurethane/cyclophosphazene functionalized titanium carbide/carbon fiber fabric (TPU/CP-Ti3C2Tx/CF) nanocomposites with high fire safety and mechanical strength and toughness were prepared through the methods of melt blending, layer-by-layer stacking and thermocompression. The TPU/CP-Ti3C2Tx showed improved thermal stability. Moreover, the peak of heat release rate and total heat release of the hi-erarchical TPU sample containing 4.0 wt.% CP-Ti3C2Tx were respectively reduced by 64.4% and 31.8% relative to those of pure TPU, which were far higher than those of other TPU-based nanocomposites. The averaged EMI shielding effectiveness value of the hierarchical TPU/CP-Ti3C2Tx-2.0/CF nanocomposite reached 30.0 dB, which could satisfy the requirement for commercial applications. Furthermore, the ten -sile strength of TPU/CP-Ti3C2Tx-2.0/CF achieved 43.2 MPa, and the ductility and toughness increased by 28.4% and 84.3% respectively compared to those of TPU/CF. Interfacial hydrogen bonding in combination with catalytic carbonization of CP-Ti3C2Tx nanosheets and continuous conductive network of CF were re-sponsible for the superior fire safety, excellent EMI shielding and outstanding mechanical performances. This work offers a promising strategy to prepare multifunctional TPU-based nanocomposites, which have the potential for large-scale application in the fields of electronics, electrical equipment and 5 G facilities.& COPY; 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN: 1005-0302
CN: 21-1315/TG
Year: 2023
Volume: 166
Page: 133-144
1 1 . 2
JCR@2023
1 1 . 2 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 88
SCOPUS Cited Count: 88
ESI Highly Cited Papers on the List: 3 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: