Indexed by:
Abstract:
Antimony sulfide (Sb2S3) solar cells have attracted extensive attention in silicon-based tandem solar cells. The performance of Sb2S3 devices fabricated by the vacuum method is limited by sulfur vacancies (V-S) and surface oxide defects during high-temperature processes. Herein, amorphous Sb2S3 film based on low-temperature rapid thermal evaporation (RTE) technique is fabricated to overcome S loss. Moreover, a sulfur-atmosphere recrystallization strategy is further developed to obtain high-quality absorbers from the amorphous film. The element content of Sb2S3 film is completely in accord with the stoichiometric ratio (2:3), and the surface oxides are effectively suppressed, enhancing V-OC and fill factor. Compared to the control directly crystallized film, the defect concentrations of the S-recrystallized Sb2S3 film are reduced by 61%, exhibiting better uniformity and higher PN junction quality. Ultimately, the full-inorganic Sb2S3 solar cells (FTO/TiO2/Sb2S3/Au) achieve an efficiency of 6.25%. The S-atmosphere recrystallization process can effectively passivate bulk defects (V-S and Sb2O3) and suppress recombination to improve device performance, which will provide new prospects for vacuum method-based Sb2S3 thin film solar cells.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SOLAR RRL
ISSN: 2367-198X
Year: 2023
Issue: 19
Volume: 7
6 . 0
JCR@2023
6 . 0 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: