Indexed by:
Abstract:
Ni-rich layered lithiated transition metal oxide LiNi0.6Co0.2Mn0.2O2 (NCM622) is a promising candidate for Li-ion batteries. However, the high nickel content in NCM622 leads to significant capacity degradation during battery cycling. In this study, we investigated the effectiveness of niobium (Nb) doping in enhancing the performance of NCM622. Our findings demonstrate that Nb-doping reduces cation mixing and preserves the solid solution state of NCM622, as confirmed by calculated formation energy. Furthermore, the introduction of Nb imparts remarkable electrochemical properties to the material. Even under high-temperature and high-voltage conditions, the Nb-doped sample exhibits significantly improved cycling performance compared to the undoped sample, starting from the fifth cycle onwards. Through a combination of atomic-level mechanisms and experimental techniques, this research establishes that Nb-doping can enhance the structural stability and electrochemical properties of NCM622, providing a viable pathway for the industrial advancement of Ni-rich materials.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MATERIALS TODAY COMMUNICATIONS
ISSN: 2352-4928
Year: 2023
Volume: 36
3 . 7
JCR@2023
3 . 7 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0