Indexed by:
Abstract:
Redundantly actuated parallel manipulator (RAPM) has been proved to have comparative advantages of higher rigidity and higher payload over other parallel manipulators. This paper is to quantitatively reveal the effect of redundancy on rigidity enhancement of a previously invented 2UPR & 1RPS & 1RPU RAPM. For this purpose, three critical issues are clarified, i.e., establishing a sufficient accurate stiffness model, constructing a reasonable index frame for evaluating rigidity performance, and quantifying the effect of redundancy on the rigidity enhancement. First, drawing on the screw theory, a hierarchical method is presented to establish a semi-analytic stiffness model at the joint level for the proposed RAPM. Subsequently, based on the stiffness matrix, a set of local and global stiffness indices are constructed to evaluate the rigidity of parallel manipulators. Finally, the stiffness indices of the 2UPR & 1RPS & 1RPU RAPM and its non-redundantly actuated forms are predicted and compared to reveal the effort of redundancy. The present work is expected to provide a useful frame for quantitatively assessing redundancy-induced rigidity enhancement in redundantly actuated parallel manipulators.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME
ISSN: 1942-4302
Year: 2023
Issue: 4
Volume: 15
2 . 2
JCR@2023
2 . 2 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:35
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: