Indexed by:
Abstract:
With the proliferation of machine learning, the cloud server has been employed to collect massive data and train machine learning models. Several privacy-preserving machine learning schemes have been suggested recently to guarantee data and model privacy in the cloud. However, these schemes either mandate the involvement of the data owner in model training or utilize high-cost cryptographic techniques, resulting in excessive computational and communication overheads. Furthermore, none of the existing work considers the malicious behavior of the cloud server during model training. In this paper, we propose the first privacy-preserving and verifiable support vector machine training scheme by employing a two-cloud platform. Specifically, based on the homomorphic verification tag, we design a verification mechanism to enable verifiable machine learning training. Meanwhile, to improve the efficiency of model training, we combine homomorphic encryption and data perturbation to design an efficient multiplication operation for the encryption domain. A rigorous theoretical analysis demonstrates the security and reliability of our scheme. The experimental results indicate that our scheme can reduce computational and communication overheads by at least 43.94% and 99.58%, respectively, compared to state-of-the-art SVM training methods.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
ISSN: 1556-6013
Year: 2023
Volume: 18
Page: 3476-3491
6 . 3
JCR@2023
6 . 3 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:32
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 57
SCOPUS Cited Count: 65
ESI Highly Cited Papers on the List: 7 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: