Indexed by:
Abstract:
The yolk-shell structure electrocatalysts formed by polymetallic sulfides hold great promise in a variety of energy conversion/storage fields. Herein, the nitrogen/sulfur codoped porous carbon encapsulated Co3S4@NiS/Cu2S nanopolyhedrons (NSC-Co3S4@NiS/Cu2S) with hierarchical yolk-shell structures were successfully designed and synthesized by a facile one-step high-temperature degradation of zeolite imidazolate framework-67 (ZIF-67) wrapped with metal-doped trithiocyanuric acid (TCA-M). Trithiocyanuric acid played a dual role, not only providing nitrogen, sulfur, and carbon sources, but also playing a role in the sulfurization of metal elements. It is worth noting that, due to the higher specific surface area, unique morphology, multi-element synergies, and more favorable chemical composition, the synthesized samples possessed outstanding bifunctional electro-catalytic performance for dye-sensitized solar cells (DSSCs) and hydrogen evolution reactions (HERs). Experi-mental results showed that NSC-Co3S4@NiS/Cu2S electrode has a high photoelectric conversion efficiency (9.57%) in DSSCs. In addition, NSC-Co3S4@NiS/Cu2S electrode also showed a lower initial overpotential (65.1 mV) and Tafel slope (49.7 mV dec-1) in the alkaline HERs test. The present approach has proposed a new syn-thetic idea of hierarchical yolk-shell metal sulfide in different new energy catalysis fields.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SURFACES AND INTERFACES
ISSN: 2468-0230
Year: 2023
Volume: 40
5 . 7
JCR@2023
5 . 7 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: