Indexed by:
Abstract:
为充分提取 3D点云的深层特征以提高复杂室内点云场景的语义分割精度,提出一种结合局部特征和全局特征的室内点云语义分割网络GSFNet.在局部特征部分,加入几何特征信息,并设计几何与语义特征信息编码模块,以更好地捕获室内点云局部信息.对全局特征部分,在编码解码器结构中间层加入全局关系依赖模块,构建不同邻域对象之间的关系提取有效分割信息.使用斯坦福大规模室内数据集(S3DIS)进行实验验证,在测试数据集上测试的总体精度(OA)和平均交并比(mIoU)分别为 87.2%和 61.1%,实验结果表明,GSFNet对复杂室内环境有较好的语义分割效果.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2023
Issue: 3
Volume: 51
Page: 371-378
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: