Indexed by:
Abstract:
A model based on the random forest is constructed to repair the missing trade times in ETC transaction data. The driving speed and traffic volume characteristics of the vehicles in the ETC transaction data are analyzed, while the driving speed of the missed transaction vehicles, and the distance of the road section where they are located, are combined as input features to repair the missing transaction time. A one-day transaction data of a province is used to test. The analysis results show that the random forest model has a better restoration effect and has a smaller mean absolute error and root mean square error; its mean absolute error is 2.71 s, the highest accuracy among the compared methods, and the data are more accurate and complete after interpolation using the random forest model. This paper suggests that the research based on ETC transaction data should first adopt the processing method in this paper to repair the missing trade time in the transaction data to improve the integrity of the data used and ensure the validity and accuracy of the relevant calculation results. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 2190-3018
Year: 2023
Volume: 347 SIST
Page: 251-262
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: