Indexed by:
Abstract:
The representation learning approach aims to obtain a low-dimensional representation of nodes and accomplish community detection by clustering. Adjacency matrix is the most common form of network representation, but it only represents the direct connection relationship of network nodes and lacks more useful topological information. Existing approaches, such as jaccard coefficient for topology extraction, are still limited to neighborhoods, and the available information is not rich enough. In addition, roles, another vital idea, lack a more profound application to network topology. This paper proposes a novel community detection algorithm based on enhancing graph autoencoder with node structural role (CDESR). On the one hand, the structural role we designed effectively specifies the importance of nodes in the network. Based on this idea, a new strategy for computing node topological relations is proposed for their information extraction. On the other hand, the enhancement matrix constructed using the extracted rich information efficiently optimizes the graph autoencoder to obtain a high-quality representation. The experimental results on real-world and synthetic networks verify the effectiveness of our algorithm. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2023
Volume: 1681 CCIS
Page: 217-231
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: