Indexed by:
Abstract:
Polymeric carbon nitride (PCN) is an emerging class of polymer semiconductor photocatalysts, but bulk PCN typically suffers from low visible-light-harvesting ability, high activation energy, and rapid charge recombina-tion. In this context, using the same core building block, a donor-acceptor (D-A) type heptazine-based polymer, namely BPCN, was proposed via Friedel-Crafts arylation reaction to tackle these issues. Comparatively, the affording BPCN features extended light absorption, reduced activation energy, and suppressed charge recom-bination, triggered by the electron push-pull interactions as a consequence of the D-A configuration. BPCN is elucidated to be an effective heterogeneous photocatalyst for aerobic organic transformations and a wide range of substrate scopes and reactions were realized. Besides, BPCN also showed an advantage in mediating the photocatalytic water oxidation reaction, achieving a nearly 10-fold oxygen evolution reaction (OER) rate over PCN. These findings demonstrate the great potential of the rational design of heptazine-based polymers with D-A configurations for artificial photosynthesis.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2022
Volume: 325
2 2 . 1
JCR@2022
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 57
SCOPUS Cited Count: 61
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: