Indexed by:
Abstract:
At present, the development of cheap and efficient electrocatalytic hydrogen evolution catalyst is of great sig-nificance to the industrialization of hydrogen energy. In this work, Mo2TiC2Tx was firstly obtained by etching Mo2TiAlC2 with hydrofluoric acid (HF), and then CoS2 nanoparticles were grown on the surface of Mo2TiC2Tx to prepare CoS2@Mo2TiC2Tx catalyst by one-pot hydrothermal method. The hydrothermal vulcanization method for the preparation of CoS2@Mo2TiC2Tx electrocatalyst not only saves the experimental cost but also has higher vulcanization efficiency. Due to the synergistic effect of CoS2 and Mo2TiC2Tx, the CoS2@Mo2TiC2Tx catalyst exhibited good hydrogen evolution reaction catalytic activity in 0.5 M H2SO4; at a current density of 10 mA/cm2, the overpotential is only 132 mV, and the Tafel slope is 116 mV/dec. Besides, due to its unique morphology, CoS2@Mo2TiC2Tx still exhibits good durability after 24 h of continuous electrolysis. Therefore, this work pro-vides a possibility to realize non-precious metal electrocatalyst to replace Pt/C.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
DIAMOND AND RELATED MATERIALS
ISSN: 0925-9635
Year: 2023
Volume: 135
4 . 3
JCR@2023
4 . 3 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: