Indexed by:
Abstract:
Current research on knowledge graphs focuses mostly on static knowledge graphs while ignoring temporal information. Recently, people have begun to study the temporal knowledge graph, which integrates temporal information into KGC, so that the modeling is constantly changing with the knowledge that evolves over time. In this survey, we summarize the existing temporal knowledge graph research, which is divided into extrapolation tasks and interpolation tasks according to time. The extrapolation task is mainly used to predict future facts and consists of three models: Temporal Point Process, Time Series, and other models. The interpolation task extends the existing KGC models to complement the lack of past temporal information, including five models: Translational Distance, Semantic Matching, Neural, Relational Rotation, and Hyperbolic Geometric models.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022
ISSN: 2367-4512
Year: 2023
Volume: 153
Page: 1002-1014
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: