Indexed by:
Abstract:
针对现有去雾方法色彩失真、去雾不彻底、细节丢失等问题,提出一种模块化的端到端的单幅图像深度去雾网络.首先,利用多尺度卷积核对输入有雾图像提取充分的关键特征;其次,构建由残差密集块及上、下采样单元形成的行和列的网格网络结构,行列之间通过一种新颖的注意力机制进行特征融合与提取;最后,由残差密集块和卷积层构成的后处理模块进一步减少去雾图像的残余伪影.定量和定性实验结果表明,所提方法去雾性能优越.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福建师范大学学报(自然科学版)
ISSN: 1000-5277
CN: 35-1074/N
Year: 2023
Issue: 1
Volume: 39
Page: 68-74
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 68
Affiliated Colleges: