Indexed by:
Abstract:
针对光伏组件热斑若未及时发现处理,会严重影响光伏组件及阵列正常运行的问题,为了有效检测光伏阵列热斑,提出一种基于YOLOv5框架的深度学习热斑检测方法.首先,采用像素加权平均法融合红外和可见光图像作为检测对象,实现同时对光伏组件热斑和遮挡物的检测,并初步分析热斑成因.其次,改进模型框架,在轻量级网络MobileNetV3-large的基础上,融合坐标注意力机制,设计更轻量、更高效的MobileNetCA作为特征提取网络.然后,针对训练中正负样本数量极不平衡的情况,更换损失函数为变焦距损失函数,达到训练中突出正例的效果.同时,改进模型anchor box目标框生成算法,使生成的目标框与实际标注框更一致.实验结果表明,改进后的模型mAP为88.9%,较原YOLOv5s模型提升了3.8%,且模型参数量仅为原模型的48.6%.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2023
Issue: 1
Volume: 51
Page: 33-40
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: