Indexed by:
Abstract:
Edge computing is an emerging promising computing paradigm that brings computation and storage resources to the network edge, significantly reducing service latency. In this paper, we aim to divide the task into several sub-tasks through its inherent interrelation, guided by the idea of high concurrency for synchronization, and then offload sub-tasks to other edge servers so that they can be processed to minimize the cost. Furthermore, we propose a DRL-based Multi-Task Dependency Offloading Algorithm (MTDOA) to solve challenges caused by dependencies between sub-tasks and dynamic working scenes. Firstly, we model the Markov decision process as the task offloading decision. Then, we use the graph attention network to extract the dependency information of different tasks and combine Long Short-term Memory (LSTM) with Deep Q Network (DQN) to deal with time-dependent problems. Finally, simulation experiments demonstrate that the proposed algorithm boasts good convergence ability and is superior to several other baseline algorithms, proving this algorithm’s effectiveness and reliability. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2022
Volume: 1723 CCIS
Page: 111-122
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: