Indexed by:
Abstract:
COVID-19 has caused havoc throughout the world in the last two years by infecting over 455 million people. Development of automatic diagnosis software tools for rapid screening of COVID-19 via clinical imaging such as X-ray is vital to combat this pandemic. An optimized deep learning model is designed in this paper to perform automatic diagnosis on the chest X-ray (CXR) images of patients and classify them into normal, pneumonia and COVID-19 cases. A convolutional neural network (CNN) is employed in optimized deep learning model given its excellent performances in feature extraction and classification. A particle swarm optimization with multiple chaotic initialization scheme (PSOMCIS) is also designed to fine tune the hyperparameters of CNN, ensuring the proper training of network. The proposed deep learning model, namely PSOMCIS-CNN, is evaluated using a public database consists of the CXR images with normal, pneumonia and COVID-19 cases. The proposed PSOMCIS-CNN is revealed to have promising performances for automatic diagnosis of COVID-19 cases by producing the accuracy, sensitivity, specificity, precision and F1 score values of 97.78%, 97.77%, 98.8%, 97.77% and 97.77%, respectively. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 1876-1100
Year: 2023
Volume: 988
Page: 61-73
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: