Indexed by:
Abstract:
The development of high mobility emissive organic semiconductors is of great significance for the fabrication of miniaturized optoelectronic devices, such as organic light emitting transistors. However, great challenge exists in designing key materials, especially those who integrates triplet exciton utilization ability. Herein, dinaphthylanthracene diimides (DNADIs), with 2,6-extended anthracene donor, and 3 '- or 4 '-substituted naphthalene monoimide acceptors were designed and synthesized. By introducing acceptor-donor-acceptor structure, both materials show high electron mobility. Moreover, by fine-tuning of substitution sites, good integration with high solid state photoluminescence quantum yield of 26 %, high electron mobility of 0.02 cm(2) V-1 s(-1), and the feature of hot-exciton induced delayed fluorescence were obtained in 4 '-DNADI. This work opens a new avenue for developing high electron mobility emissive organic semiconductors with efficient utilization of triplet excitons.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2023
Issue: 10
Volume: 62
1 6 . 1
JCR@2023
1 6 . 1 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 22
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6