Indexed by:
Abstract:
To alleviate the restriction of system model on control design, data-driven model-free adaptive control (MFAC) is an excellent alternative to model-based control methods. This paper studies event-triggered data-driven control for switched systems over a vulnerable and resource-constrained network. The system is transformed into an equivalent switched data model through dynamic linearization. Resource constraints and denial of service (DoS) attacks in the network are concerned, and a novel joint anti-attack method including resilient event-triggering mechanism and prediction scheme is presented. Furthermore, new event-triggered MFAC algorithms are proposed. In this scenario, by constructing a Lyapunov functional on tracking error, sufficient conditions to ensure its boundedness are derived. This is the first time in the literature to give a complete solution to data-driven control of switched systems. At last, the validity of new algorithms and theoretical results is confirmed by simulations. (c) 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS
ISSN: 0016-0032
Year: 2022
Issue: 17
Volume: 359
Page: 9569-9590
4 . 1
JCR@2022
3 . 7 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: