Indexed by:
Abstract:
Photocatalytic H2 evolution and biomass-derived alcohol oxidation is a cooperative way for improving the utilization of photogenerated charge carriers. Herein, a highly efficient photocatalyst was fabricated by decorating Zn0.5Cd0.5S with a C,N codoped CoP polyhedron (referred to as CoP, derived from ZIF-67), and then it was used for H2 evolution and 5hydroxymethylfurfural (HMF) oxidation. For the optimized sample (20% CoP/Zn0.5Cd0.5S), the generated H2 rate is significantly enhanced from that of the HMF aqueous solution with 2,5-diformylfuran (DFF) as a concomitant product, about 31.7 times higher than the pristine Zn0.5Cd0.5S under visible light irradiation. The separation of photoexcited electrons (e-) and holes (h+) in the process was promoted, as both e- and h+ were involved in the desired conversions. From the results of density functional theory (DFT) calculations and in situ XPS spectra, the utilization of e- was further improved as a spontaneous transfer from Zn0.5Cd0.5S to CoP occurred due to the p-n heterojunction formed between Zn0.5Cd0.5S (n type) and CoP (p type). This work provides an efficient method to separate the photoinduced charge carriers and a new way for H2 evolution accompanied by transformation of HMF to DFF.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2022
9 . 5
JCR@2022
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 23
SCOPUS Cited Count: 24
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: