Indexed by:
Abstract:
Wi-Fi fingerprint-based indoor localization has recently attracted significant research interest since Wi-Fi devices are widely deployed and practical, and no additional infrastructure is required. However, the Received Signal Strength (RSS) is significantly different on heterogeneous devices, and this difference has a negative impact on localization results. In this paper, we propose a multi-fingerprint and multi-classifier fusion (MFMCF) localization method to improve the localization accuracy and solve the problem of heterogeneous hardware. First, the individual feature set of original RSS fingerprint, signal strength difference (SSD) fingerprint and hyperbolic location fingerprint (HLF) are fused as a composite fingerprint set (CFS), and then the data dimension is reduced by linear discriminant analysis (LDA). Second, three representative machine learning algorithms including K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF) are selected and trained to construct an integrated fusion model. Finally, in order to get more accurate predictions, in the online phase, a selective strategy based on entropy is proposed by calculating the entropy of each classifier's prediction result. Experiments show that MFMCF is an effective scheme to solve the localization problem of heterogeneous devices and improve the localization accuracy.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
ISSN: 0018-9545
Year: 2022
Issue: 11
Volume: 71
Page: 12117-12127
6 . 8
JCR@2022
6 . 1 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: