Abstract:
本文针对永磁同步电机匝间短路和失磁故障进行研究,提出了一种基于mixup数据增强和机器学习分类器的故障诊断方法。该方法提取通过小波包分解提取定子电流信号中的故障特征建立故障诊断样本,结合mixup实现样本扩张,避免小样本带来的过拟合问题。最后将扩张样本输入长短时记忆网络(long short-term memory, LSTM)进行分类。结果表明,该方法能够高效地实现永磁同步电机故障诊断,且具有较高的准确度和较强的抗噪性能。
Keyword:
Reprint 's Address:
Email:
Source :
电气开关
Year: 2022
Issue: 05
Volume: 60
Page: 58-62
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: