Indexed by:
Abstract:
The deformation prediction of a concrete dam is important to its safe operation. To solve the problem of low prediction accuracy of traditional analysis methods resulted from the difficulty in capturing the characteristics of long-term sequences, this paper uses a combination of Sparrow Search Algorithm (SSA) and the K-Harmonic Mean (KHM) algorithm to cluster the monitored values and capture the long-sequence features. Then, we use methods such as Complete Ensemble Empirical Mode Decomposition (CEEMDAN) to reduce the noise in the clustered data, and a long short-term memory (LSTM) model to predict long sequences. The analysis results show this clustering method has a better capability of identifying long-sequence features. It removes the redundant information from the sequence by cooperating with the CEEMDAN decomposition-based method, and enables the LSTM model to better capture the time-sequence characteristics of dam deformation, thus improving the prediction accuracy significantly. The proposed method is good in accuracy and adaptability and useful for dam deformation prediction. © 2022 Tsinghua University Press. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Hydroelectric Engineering
ISSN: 1003-1243
CN: 11-2241/TV
Year: 2022
Issue: 10
Volume: 41
Page: 112-127
Cited Count:
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: