Indexed by:
Abstract:
IoT sensors have already penetrated into extremely broad fields such as industrial production, smart home, environmental protection, medical diagnosis, and bioengineering. Although efficient data fusion helps improve the quality of intelligent services provided by the Internet of things, because the perceived data carry the sensitive information of the perceived object, the data fusion process is prone to the risk of privacy leakage. To this end, in this paper, we proposed a privacy-enhanced federated learning data fusion strategy. This strategy adds Gaussian noise at different stages of federated learning to achieve privacy protection in the data fusion process. Experimental results show that this strategy provides better privacy protection while achieving high-precision IoT data fusion.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MOBILE INFORMATION SYSTEMS
ISSN: 1574-017X
Year: 2022
Volume: 2022
1 . 8 6 3
JCR@2021
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: