Indexed by:
Abstract:
With increasing the market share of electric vehicles (EVs), the rechargeable lithium-ion batteries (LIBs) as the critical energy power sources have experienced rapid growth in the last decade, and the massive LIBs will be retired after the service life of EVs. To dispose of retired LIBs, the comprehensive recycling including echelon utilization and materials recovery has attracted global attention due to its maximization of recycling value. In the development of comprehensive recycling, extensive efforts have been devoted to resolving challenges associated with the pretreatment processes, such as the rapid sorting, electrolyte separation, and automatic dismantling. However, the efficiency and safety of pretreatment still need to be improved to confront the diversity and complex structures of massive retired LIBs by EVs industry. Based on this, this review will comprehensively review and analyze the current state of technologies as well as the technical challenges and perspectives of all key aspects of comprehensive recycling and the involved pretreatment, including fundamentals of state-of-the-art technologies, operating strategies of different applications, technical and environmental issues as well as future research directions to overcome these challenges.
Keyword:
Reprint 's Address:
Version:
Source :
ENERGY STORAGE MATERIALS
ISSN: 2405-8297
Year: 2023
Volume: 54
Page: 172-220
1 8 . 9
JCR@2023
1 8 . 9 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 33
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: