Indexed by:
Abstract:
高光谱图像具有波段连续、维数高、数据量大、相邻波段相关性强的特点,可为地物分类提供更为丰富的细节信息。但是,数据中存在大量冗余信息与噪声,在图像分类中如直接利用其所有波段特征而不进行有效分析与选择,将会导致较低的计算效率和较高的计算复杂度,分类精度亦可能随着波段维数增加而出现先增后减的“休斯(Hughes)现象”。为快速地从高达数十个甚至数百个波段的高光谱图像中提取出具有较好识别能力的特征子集,从而避免“维度灾难”,将过滤式ReliefF算法和封装式特征递归消除算法(RFE)相结合,构建了ReliefF-RFE特征选择算法,可用于高光谱图像分类的特征选择。该算法根据权重阈值,利用ReliefF...
Keyword:
Reprint 's Address:
Email:
Source :
光谱学与光谱分析
Year: 2022
Issue: 10
Volume: 42
Page: 3283-3290
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: