Indexed by:
Abstract:
A novel precast beam-column joint using shape memory alloy fibers-reinforced engineered cementitious composites (SMA-ECC) was proposed in this study to achieve self-repairing of cracks and internal damage after an earthquake. Three large-scale beam-column joints were tested under displacement reversals, including one monolithically cast conventional concrete joint, one engineered cementitious composites (ECC) reinforced precast concrete joint, and one SMA-ECC reinforced precast concrete joint. Failure mode, crack pattern, hysteretic behavior, stiffness degradation, displacement ductility, and energy dissipation capacity were compared and evaluated through a cyclic loading test. The test results showed that the ECC-based (ECC, SMA-ECC) precast joints have equivalent seismic properties to the monolithically cast concrete joint. ECC-based joints enhanced the ductility and energy dissipation capacity of the joint and, remarkably, reduced crack width. The SMA-ECC reinforced joint also exhibited instant self-healing in terms of the closure of small cracks after unloading. The self-healing performance was further evaluated through ultrasonic pulse tests, with the results showing that the use of SMA-ECC material was efficient in reducing the internal damage of beam-column joints after an earthquake.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
BUILDINGS
ISSN: 2075-5309
Year: 2022
Issue: 9
Volume: 12
3 . 8
JCR@2022
3 . 1 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: