Indexed by:
Abstract:
The leaching behavior of molybdenite was investigated in H2O2-H2SO4 solution in this paper. The results show that H2O2 was an effective oxidant for molybdenite leaching, but it had fast decomposition kinetics. A final molybdenum extraction of 73.0% was obtained under the experimental conditions of 0.5 mol/L H2SO4, 0.5 mol/L H2O2, and the fresh H2O2 addition enhanced molybdenum extraction from 73.0 to 94.5%. The leaching process was controlled by a mixture of surface reactions and diffusion, and the activation energy was 27.98 kJ/mol. Ethylene glycol enhanced molybdenum extraction and improved the stability of H2O2. Electrochemical studies suggested that the decomposition kinetics of H2O2 was faster than that of molybdenite oxidation, and ethylene glycol enhanced recovery by increasing the resistance of H2O2 decomposition and decreasing the resistance of molybdenite oxidation. XRD and XPS analysis confirmed that ethylene glycol did not alter the phase composition and the surface chemical statues of molybdenite.
Keyword:
Reprint 's Address:
Version:
Source :
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS
ISSN: 0972-2815
Year: 2022
Issue: 1
Volume: 76
Page: 39-47
1 . 6
JCR@2022
1 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: