• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zheng, Qinghai (Zheng, Qinghai.) [1] (Scholars:郑清海)

Indexed by:

EI SCIE

Abstract:

Large-scale Multi-View Clustering (LMVC) is a hot research problem in the fields of signal processing and machine learning, and many anchor-based multi-view subspace clustering algorithms are proposed in recent years. However, most existing methods usually concentrate on the issue of reducing the time cost and ignore the exploration of the complementary information during the clustering process. To this end, we propose a Fast Essential Subspace Representation Learning (FESRL) method for large-scale multi-view subspace clustering. Specifically, FESRL introduces the orthogonal transformation to investigate both the complementary and consensus information across multiple views. The essential subspace representation can be learned in a linear time cost. Experiments conducted on several benchmark datasets illustrate the competitiveness of the proposed method.

Keyword:

Clustering algorithms Convergence Costs Large-scale multi-view subspace clustering linear computational complexity Optimization Representation learning Signal processing algorithms Time complexity

Community:

  • [ 1 ] [Zheng, Qinghai]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China

Reprint 's Address:

  • 郑清海

Show more details

Related Keywords:

Related Article:

Source :

IEEE SIGNAL PROCESSING LETTERS

ISSN: 1070-9908

Year: 2022

Volume: 29

Page: 1893-1897

3 . 9

JCR@2022

3 . 2 0 0

JCR@2023

ESI Discipline: ENGINEERING;

ESI HC Threshold:66

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count: 8

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:107/10008270
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1