Indexed by:
Abstract:
针对目前主流深度学习网络模型应用于高空间分辩率遥感影像建筑物提取存在的内部空洞、不连续以及边缘缺失与边界不规则等问题,本文在U-Net模型结构的基础上通过设计新的激活函数(ACON)、集成残差以及通道-空间与十字注意力模块,提出RMAU-Net模型.该模型中的ACON激活函数允许每个神经元自适应地激活或不激活,有利于提高模型的泛化能力和传输性能;残差模块用于拓宽网络深度并降低训练和学习的难度,获取深层次语义特征信息;通道-空间注意力模块用于增强编码段与解码段信息的关联、抑制无关背景区域的影响,提高模型的灵敏度;十字注意力模块聚合交叉路径上所有像素的上下文信息,通过循环操作捕获全局上下文信息,提高像素间的全局相关性.以Massachusetts数据集为样本的建筑物提取实验表明,在所有参与比对的7个模型中,本文提出的RMAU-Net模型交并比与F1分数2项指标最优、查准率和查全率两项指标接近最优,RMA-UNet总体效果优于同类模型.通过逐步添加每个模块来进一步验证各模块的有效性以及本文所提方法的可靠性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
地球信息科学学报
ISSN: 1560-8999
Year: 2022
Issue: 4
Volume: 24
Page: 792-801
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: