Indexed by:
Abstract:
针对在现实生活中光伏阵列大部分运行在正常的工作状态,缺少故障数据的问题,提出一种改进初始化的方法代替随机初始化来训练深度学习模型,以提高故障诊断模型的可靠性.同时,提出基于残差-密集连接网络的光伏故障诊断模型,并基于I-V曲线与最大功率点、温度、辐照度和填充因子作为输入特征.最后,通过多种光伏阵列故障数据检测所提出的方法的性能.实验结果表明,改进初始化的残差-密集连接网络在小样本的情况下仍具有高收敛速度、高准确性以及高稳定性,且能稳定分类各种环境下的光伏阵列故障.
Keyword:
Reprint 's Address:
Email:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2022
Issue: 2
Volume: 50
Page: 192-197
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: