Indexed by:
Abstract:
顶层油温预测可为特高压变压器绝缘老化评估及故障预警提供重要依据.该文提出一种基于条件互信息(conditional mutual information,CMI)及长期和短期时间序列网络(long-and short-term time-series network,LSTNet)的特高压变压器顶层油温预测方法.基于历史监测数据包括顶层油温、油中溶解气体含量、绕组温度、绕组电流、环境温度等9种参量,采用条件互信息方法,为顶层油温预测选取具有强信息增益的特征量,以降低预测模型输入特征维度;在此基础上,利用LSTNet提取特征量中蕴含的长期周期性规律和短期非线性变化特性,建立基于CMI-LSTNet预测模型,实现特高压变压器多个部位顶层油温预测.算例结果表明,相较于现有典型预测方法,该文方法不仅适应特高压变压器顶层油温变化趋势,且具有较高的预测精度.
Keyword:
Reprint 's Address:
Email:
Source :
电网技术
ISSN: 1000-3673
Year: 2022
Issue: 7
Volume: 46
Page: 2601-2609
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: