Abstract:
房颤发病突然且往往伴随着严重的并发症(如脑卒中、心肌梗死等),对健康产生极大威胁.随着深度学习技术的发展,深度神经网络因能自动提取特征等优势在房颤分类算法中被广泛应用.本文提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)网络、可用于房颤分类预测的深度学习框架,可根据心电图预测房颤.借助CNN提取心电信号的形态特征并进行序列重构,将重构序列输入Bi-LSTM网络,对正反时序的节律变化进行分析,能够有效预测房颤发生前30 min内的数据、正常窦性心律数据和房颤发生时的数据.利用长时房颤数据库、MIT-BIH房颤数据库和MIT-BIH正常窦性心律数据库的数据,对提出的算法进行了训练与验证,准确率达93.3%.
Keyword:
Reprint 's Address:
Email:
Source :
实用心电学杂志
ISSN: 1008-0740
Year: 2022
Issue: 4
Volume: 31
Page: 256-261
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: