• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Chen, Xingju (Chen, Xingju.) [1] | Karmaker, Nanda (Karmaker, Nanda.) [2] | Cloutier, Pierre (Cloutier, Pierre.) [3] | Bass, Andrew D. (Bass, Andrew D..) [4] | Zheng, Yi (Zheng, Yi.) [5] | Sanche, Léon (Sanche, Léon.) [6]

Indexed by:

EI

Abstract:

The interaction of low-energy electrons (LEEs) with DNA plays a significant role in the mechanisms leading to biological damage induced by ionizing radiation, particularly in radiotherapy, and its sensitization by chemotherapeutic drugs and nanoparticles. Plasmids constitute the form of DNA found in mitochondria and appear as a suitable model of genomic DNA. In a search for the best LEE targets, damage was induced to plasmids, in thin films in vacuum, by 6, 10, and 100 eV electrons under single collision conditions. The yields of single- and double-strand breaks, other cluster damage, isolated base lesions, and crosslinks were measured by electrophoresis and enzyme treatment. The films were deposited on oriented graphite or polycrystalline tantalum, with or without DNA autoassembly via diaminopropane (Dap) intercalation. Yields were correlated with the influence of vacuum, film uniformity, surface density, substrates, and the DNA environment. Aided by surface potential measurements and scanning electron microscopy and atomic force microscopy images, the lyophilized Dap-DNA films were found to be the most practical high-quality targets. These studies pave the way to the fabrication of LEE target-films composed of plasmids intercalated with biomolecules that could mimic the cellular environment; for example, as a first step, by replacing Dap with an amino acid. © 2022 American Chemical Society.

Keyword:

Atomic force microscopy Biomolecules DNA Electrons Electrophoresis Ionizing radiation Scanning electron microscopy Thin films

Community:

  • [ 1 ] [Chen, Xingju]State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou; 350116, China
  • [ 2 ] [Karmaker, Nanda]Département de Médecine Nucléaire et Radiobiologie, Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke; QC; J1H 5N4, Canada
  • [ 3 ] [Cloutier, Pierre]Département de Médecine Nucléaire et Radiobiologie, Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke; QC; J1H 5N4, Canada
  • [ 4 ] [Bass, Andrew D.]Département de Médecine Nucléaire et Radiobiologie, Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke; QC; J1H 5N4, Canada
  • [ 5 ] [Zheng, Yi]State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou; 350116, China
  • [ 6 ] [Zheng, Yi]Département de Médecine Nucléaire et Radiobiologie, Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke; QC; J1H 5N4, Canada
  • [ 7 ] [Sanche, Léon]Département de Médecine Nucléaire et Radiobiologie, Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke; QC; J1H 5N4, Canada

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Journal of Physical Chemistry B

ISSN: 1520-6106

Year: 2022

Issue: 29

Volume: 126

Page: 5443-5457

3 . 3

JCR@2022

2 . 8 0 0

JCR@2023

ESI HC Threshold:74

JCR Journal Grade:3

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:227/10461709
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1