Indexed by:
Abstract:
The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes, causing the "shuttle effect" of soluble polysulfide species (PSs), is the challenges in terms of lithium-sulfur batteries (LSBs). In this paper, a Mn3O4-x catalyst, which has much higher activity for heterogeneous reactions than for homogeneous reactions (namely, preferential-activity catalysts), is designed by surface engineering with rational oxygen vacancies. Due to the rational design of the electronic structure, the Mn3O4-x catalyst prefers to accelerate the conversion of Li2S4 into Li2S2/Li2S and optimize Li2S deposition, reducing the accumulation of PSs and thus suppressing the "shuttle effect." Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and LiyMnzO4-x for fundamental understanding. The cell with Mn3O4-x delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C. Even with sulfur loadings of 4.93 and 7.10 mg cm(-2) in a lean electrolyte (8.4 mu L mg s(-1)), the cell still shows an initial areal capacity of 7.3 mAh cm(-2). This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the "shuttle effect" of the soluble PSs generated during the redox process of LSBs.
Keyword:
Reprint 's Address:
Version:
Source :
CARBON ENERGY
ISSN: 2637-9368
Year: 2022
Issue: 2
Volume: 5
2 0 . 5
JCR@2022
1 9 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 47
SCOPUS Cited Count: 43
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: