Home>Results
Advanced Search
Indexed by:
Abstract:
Identification of different mitochondrial reactive oxygen species (ROS) simultaneously in living cells is vital for understanding the critical roles of different ROS in biological processes. To date, it remains a great challenge to develop ROS probes for direct and simultaneous identification of multiple ROS with high specificity. Herein, we report a SERS-borrowing-strategy-based nanoprobe (Au@Pt core–shell nanoparticles) for simultaneous and direct identification of different ROS by their distinct Raman fingerprints. Isotope substitution experiments and DFT calculations confirmed the ability of Au@Pt nanoprobe to capture and identify different mitochondrial ROS (i.e. ⋅OOH, H2O2, and ⋅OH). When functionalized with triphenylphosphine (TPP), the Au@Pt-TPP nanoprobe located to mitochondria and detected multiple ROS simultaneously in living cells under oxidative stimulation. Our method offers a new tool for the study of the functions of various ROS in biological processes. © 2022 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Angewandte Chemie - International Edition
ISSN: 1433-7851
Year: 2022
Issue: 25
Volume: 61
1 6 . 6
JCR@2022
1 6 . 1 0 0
JCR@2023
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:1
Affiliated Colleges: