Indexed by:
Abstract:
投资者关注在股市中的作用是近年来研究的热门问题之一.文章创新性地将百度指数作为中国市场投资者关注度指标加入以差分进化算法优化的极限学习机(DE-ELM)中,研究百度指数对中国股票指数的预测能力.实证结果显示,差分进化算法极限学习机(DE-ELM)模型的预测能力较传统计量模型ARIMA模型和传统神经网络模型BP神经网络模型显著提高,且加入百度指数能够提升DE-ELM模型对股指收益率的预测精度,其中以加入“牛市”、“熊市”和“金融危机” 3个百度指数的差分进化算法极限学习机(DE-ELM)预测精度最高,结果最稳定.
Keyword:
Reprint 's Address:
Email:
Source :
系统科学与数学
ISSN: 1000-0577
CN: 11-2019/O1
Year: 2022
Issue: 06
Volume: 42
Page: 1503-1518
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: