Abstract:
以K-means为代表的聚类算法被广泛地应用在许多领域,但是K-means不能直接处理不完整数据集.k_m-means是一种处理不完整数据集的聚类算法,通过调整局部距离计算方式,减少不完整数据对聚类过程的影响.然而k_m-means初始化阶段选取的聚类中心存在较大的不可靠性,容易陷入局部最优解.针对此问题,本文引入可信度,提出了结合可信度的k_m-means聚类算法,通过可信度调整距离计算,增大初始化过程中选取聚类中心的可靠性,提高聚类算法的准确度.最后,通过UCI和UCR数据集验证算法的有效性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机系统应用
ISSN: 1003-3254
CN: 11-2854/TP
Year: 2022
Issue: 06
Volume: 31
Page: 175-181
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: